Abstract

The autofluorescence of tendon, epimysium and endomysium at the myotendon junction of the deep digital flexor in the bovine forelimb was measured with a fluorescence microscope and with a bifurcated light guide composed of quartz optical fibres. Data were adjusted for spectral variation in the radiance of the halogen illuminator used to standardize the photometer. Samples of myotendon junction were examined intact, in slices several millimetres thick and after being frozen in liquid nitrogen and sectioned at 20 micron. Sections were examined with and without a mounting medium and with and without immersion oil objectives. Type I collagen fibres were identified by their scarcity of branching, relatively large size and yellow staining with silver. Type III collagen fibres were identified by their extensive branching, small size and black staining with silver. Purified Types I and III collagen were also examined. Type I collagen fibres had a strong fluorescence emission peak between 410 and 450 nm and a shoulder at 510 nm. For the strong peak, results obtained by fibre-optics were positively biased relative to those obtained by microscopy. Type III collagen reticular fibres lacked a strong emission peak at 410 to 450 nm. Although their overall fluorescence was weaker than that of Type I collagen fibres, Type III collagen fibres had similar or slightly stronger emissions around 510 nm. The Type I emission spectrum of collagen fibres was converted to a spectrum similar to the Type III spectrum by conditions that caused the fading of fluorescence (storage as dry or mounted sections and exposure of sections to UV light).(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.