Abstract

Quadruplex DNA, which is a relevant target for anticancer therapies, may alter its conformation because of interactions with interfaces. In pursuit of a versatile methodology to probe adsorption-induced conformational changes, the interaction between a fluorescent [2.2.2]heptamethinecyanine dye and quadruplex DNA (G4-DNA) was studied in solution and on surfaces. In solution, the cyanine dye exhibits a strong light-up effect upon the association with G4-DNA without interference from double-stranded DNA. In addition, a terminal π-stacking as a binding mode between the cyanine dye and G4-DNA is concluded using NMR spectroscopy. To unravel the effects of adsorption on the conformation of quadruplex-DNA, G4-DNA, and double-stranded and single-stranded DNA were adsorbed to positively charged poly(allylamine) hydrochloride (PAH) surfaces, both in planar and in constrained 55 nm diameter aluminum oxide nanopore formats. All DNA forms showed a very strong affinity to the PAH surfaces as shown by surface plasmon resonance and reflectometric interference spectroscopy. The significant increase of the fluorescence emission intensity of the cyanine light-up probe observed exclusively for surface immobilized G4-DNA affords evidence for the adsorption of G4-DNA on PAH with retained quadruplex conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.