Abstract

Herein, we propose a simple and effective fluoride (F-) ions post-treatment method to improve the solar water splitting performance of monoclinic BiVO4 (abbreviated as BVO). The surface modification of BVO with functional F- ions not only facilitates the transfer and separation efficiency of carriers at the electrode/electrolyte interface but also promotes the adsorption and activation of water, resulting in a photocurrent of 3.2 mA/cm2 at a bias voltage of 1.2 VRHE. Furthermore, the transfer and separation of carriers in the bulk and on the surface are further regulated by the oxygen vacancies induced by F- ions, thereby enhancing the PEC water splitting performance of BVO. Notably, the experimental findings demonstrate that the introduce of F- ions into the KBi electrolyte enhances the photo-charging process of BVO. Specifically, at a bias voltage of 0.6 VRHE, the BVO-0.12F sample exhibits a stable photocurrent of 1.2 mA/cm2, which is twice as high as that of the initial BVO sample. Remarkably, our study unveils that the addition of F- ions into the KBi electrolyte solution plays a pivotal role in facilitating the separation of charge carriers and promoting interfacial charge transport. Consequently, this further leads to a substantial enhancement in the solar water splitting performance for BVO-0.12F photoanode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.