Abstract

Plasma electrolytic oxidation (PEO) is a powerful technique allowing hardening and corrosion protection of valve metals due to formation of an oxide layer on the metal surface. PEO produces much thicker oxide layers as compared to anodizing, which is of critical importance for many technological applications.The present research investigated the influence of the fluoride ion concentration on the composition, structure and morphology of PEO layers on the magnesium alloy AZ91D. The obtained oxide layers were characterized with XRD, SEM, EDS and tested for corrosion resistance by linear sweep voltammetry in 3.5% NaCl medium.During this investigation it was found that KF addition produces significant changes in the structure and properties of the oxide layers. Fluorine was detected as an amorphous phase in the vicinity of the base metal for both alloys and plausible mechanism was suggested to explain these phenomena.Fluoride ions have pronounced catalytic activity and their presence considerably increases the thickness of the oxide layer. Depending on the process parameters, significant improvement of the corrosion stability of AZ91D alloy is achieved by the use of PEO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.