Abstract

To test the chemical-physical properties and apatite-forming ability of experimental fluoride-doped calcium silicate cements designed to create novel bioactive materials for use in endodontics and oral surgery. A thermally treated calcium silicate cement (wTC) containing CaCl(2) 5%wt was modified by adding NaF 1%wt (FTC) or 10%wt (F10TC). Cements were analysed by environmental scanning electron microscopy with energy-dispersive X-ray analysis, IR and micro-Raman spectroscopy in wet conditions immediately after preparation or after ageing in a phosphate-containing solution (Dulbecco's phosphate-buffered saline). Calcium and fluoride release and pH of the storage solution were measured. The results obtained were analysed statistically (Tukey's HSD test and two-way anova). The formation of calcium phosphate precipitates (spherulites) was observed on the surface of 24 h-aged cements and the formation of a thick bone-like B-type carbonated apatite layer (biocoating) on 28 day-aged cements. The rate of apatite formation was FTC>F10TC>wTC. Fluorapatite was detected on FTC and F10TC after 1 day of ageing, with a higher fluoride content on F10TC. All the cements released calcium ions. At 5 and 24 h, the wTC had the significantly highest calcium release (P<0.001) that decreased significantly over the storage time. At 3-28 days, FTC and F10TC had significantly higher calcium release than wTC (P<0.05). The F10TC had the significantly highest fluoride release at all times (P<0.01) that decreased significantly over storage time. No significant differences were observed between FTC and wTC. All the cements had a strong alkalinizing activity (OH(-) release) that remained after 28 days of storage. The addition of sodium fluoride accelerated apatite formation on calcium silicate cements. Fluoride-doped calcium silicate cements had higher bioactivity and earlier formation of fluorapatite. Sodium fluoride may be introduced in the formulation of mineral trioxide aggregate cements to enhance their biological behaviour. F-doped calcium silicate cements are promising bone cements for clinical endodontic use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call