Abstract
In recent years, it has been demonstrated that amide carbon-nitrogen bonds can be activated and selectively cleaved using transition metal catalysts. However, these methodologies have been restricted to specific amides; a one-to-one relationship exists between the catalytic system and the amides and also uses large amounts of transition-metal catalysts and ligands. Hence, we now report a general strategy for esterification of common amides using fluoride as a catalyst. This method shows high functional group tolerance, and notably it requires only a slight excess of the alcohol nucleophile, which is a rare case in transition-metal-free amide transformations. Moreover, this approach may provide a new understanding for further studies on esterification of amides and is expected to stimulate the development of alternative methods for direct functionalization of amides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.