Abstract
Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives of Environmental Contamination and Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.