Abstract

The present investigation reports a new fluorophore-tagged biodegradable polycaprolactone (PCL) block copolymer FRET-probe for intracellular imaging in cancer therapy. A hydroxyl functionalized π-conjugated oligo-phenylenevinylene (OPV) chromophore was tailor-made, and it was incorporated in a t-butyl ester substituted polycaprolactone block copolymer via ring opening polymerization. This blue-luminescent OPV-PCL triblock self-assembled as <200 nm spherical nanoparticles (FRET donor), and it encapsulated water insoluble Nile red (NR, FRET acceptor) to yield an OPV-NR FRET probe. Selective photo excitation of the OPV chromophore in block nanoassemblies enabled the excitation energy transfer from the OPV to NR and facilitated the efficient FRET process in aqueous medium. Time-correlated fluorescent decay dynamics and detailed photophysical studies were carried out to estimate the Förster distance, donor-acceptor distance, and the excitation energy transfer efficiency. These parameters confirmed the occurrence of the FRET process within the confined nanoparticle environment. The PCL chains in the FRET probe were susceptible to enzymatic biodegradation in intracellular environments, and the degradation process controlled the FRET on/off mechanism. Cytotoxicity studies revealed that the FRET probe was biocompatible and nontoxic to cells, and the FRET-probe was found to be readily taken up by the cancer cells, and it was internalized in the cytoplasm and peri-nuclear environment. Selective photoexcitation of the OPV chromophore in a confocal microscope exhibited dual emission from the FRET probe. The cancer cells exhibited blue luminescence (self-emission) with respect to the OPV chromophore (in the blue channel) and bright red-luminescence from the NR dye followed by the FRET process at the cellular level (in the red channel). The dual luminescence characteristics, biodegradation and biocompatibility, make the newly designed PCL-OPV-NR FRET probe an excellent biomedical nanodevice for bioimaging applications, and the proof-of-concept was established in cervical (HeLa) and breast cancer (MCF 7) cell lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.