Abstract

We describe here the enzyme-catalyzed, low-density labeling of DNAs with fluorescent dyes. Firstly, for ‘natural’ template DNAs, dNTPs were partially substituted in the labeling reactions by the respective fluorophore-bearing analogs. The DNAs were labeled by PCR using Taq DNA polymerase. The covalent incorporation of dye-dNTPs decreased in the following order: rhodamine-green-5-dUTP (Molecular Probes, the Netherlands), tetramethylrhodamine-4-dUTP (FluoroRed, Amersham Pharmacia Biotech), Cy5-dCTP (Amersham Pharmacia Biotech). Exonucleolytic degradation by the 3′→5′ exonuclease activity of T7 DNA polymerase (wild type) in the presence of excess reduced thioredoxin proceeded to complete breakdown of the labeled DNAs. The catalytic cleavage constants determined by fluorescence correlation spectroscopy were between 0.5 and 1.5 s −1 at 16°C, normalized for the covalently incorporated dye-nucleotides. Secondly, rhodamine-green-X-dUTP (Roche Diagnostics), tetramethylrhodamine-6-dUTP (Roche Diagnostics), and Cy5-dCTP were covalently incorporated into the antisense strand of ‘synthetic’ 218-b DNA template constructs (master sequences) at well defined positions, starting from the primer binding site, by total substitution for the naturally occuring dNTPs. The 218-b DNA constructs were labeled by PCR with a thermostable 3′→5′ exonuclease deficient mutant of the Tgo DNA polymerase which we have selected. The advantage of the special, synthetic DNA constructs as compared to natural DNAs lies in the possibility of obtaining tailor-made nucleic acids, optimized for testing the performance of exonucleolytic sequencing. The number of incorporated fluorescent nucleotides determined by complete exonucleolytic degradation and fluorescence correlation spectroscopy were six out of six possible incorporations for rhodamine-green-X-dUTP and tetramethylrhodamine-6-dUTP, respectively. Their covalent and base-specific incorporations were confirmed by the novel analysis methodology of re-sequencing (i.e. mobility-shift gel electrophoresis, reversion-PCR and re-sequencing) first developed in the paper Földes-Papp et al. (2001) and in this paper. This methodology was then used by other groups within the whole sequencing project.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call