Abstract

We report here the preparation of a series of Zr(IV) metal-organic frameworks (MOFs) of the MIL-140 structure type incorporating a ligand exhibiting an intense excited-state intramolecular proton transfer (ESIPT) fluorescence. These solids were obtained by systematically varying the substitution rate of 4,4'-biphenyldicarboxylate by 2,2'-bipyridine-3,3'-diol-5,5'-dicarboxylate, and they were thoroughly characterized by complementary techniques, including high-resolution powder X-ray diffraction, solid-state NMR spectroscopy, nitrogen sorption experiments, and time-resolved fluorescence. We show that the incorporation of the ESIPT-type ligand induces an increase of the hydrophilicity, leading ultimately to a higher sensitivity toward hydrolysis, a phenomenon rarely observed in this structure type, which is considered as one of the most stable among the Zr carboxylate MOFs. Eventually, optimization of the amount of fluorescent ligand within the structure allowed combining a decent microposity ( SBET > 750 m2·g-1) and a high stability even in boiling water, together with a high fluorescence quantum yield (>30%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.