Abstract
The carcinogenic activity of various nickel (Ni) compounds is likely dependent upon their ability to enter cells and elevate intracellular levels of Ni ions. Water-insoluble Ni compounds such as NiS and Ni(3)S(2) were shown in vitro to enter cells by phagocytosis and potently induce tumors in experimental animals at the site of exposure. These water-insoluble nickel compounds are generally considered to be more potent carcinogens than the water-soluble forms. However, recent in vitro studies have shown similar effects for insoluble and soluble Ni compounds. Using a dye that fluoresces when intracellular Ni ion binds to it, we showed that both soluble and insoluble Ni compounds were able to elevate the levels of Ni ions in the cytoplasmic and nuclear compartments. However, when the source of Ni ions was removed from the culture dish, the intracellular Ni ions derived from soluble Ni compound were lost from the cells at a significantly faster rate than those derived from the insoluble Ni compound. Within 10 h after NiCl(2) removal from the culture medium, Ni ions disappeared from the nucleus and were not detected in the cells by 16 h, while insoluble Ni(3)S(2) yielded Ni ions that persisted in the nucleus after 16 h and were detected in the cytoplasm even after 24 h following Ni removal. These effects are discussed in terms of whole body exposure to water-soluble and -insoluble Ni compounds and consistency with animal carcinogenicity studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.