Abstract
Microtubules (MTs) are key cytoskeletal components that modulate various cellular activities with their dynamic structural changes, including polymerization and depolymerization. To monitor the dynamics of MTs in living cells, many drug-based fluorescent probes have been developed; however, these also potentially disturb the polymerization/depolymerization of MTs. Here, we report nondrug, peptide-based fluorescent probes to monitor MTs in living cells. We employed a Tau-derived peptide (TP) that has been shown to bind MTs without inhibiting polymerization/depolymerization in vitro. We show that a tetramethylrhodamine (TMR)-labeled TP (TP–TMR) is internalized into HepG2 cells and binds to intracellular MTs, enabling visualization of MTs as clear, fibrous structures. The binding of TP–TMR shows no apparent effects on polymerization/depolymerization of MTs induced by MT-targeted drugs and temperature change. The main uptake mechanism of TP–TMR was elucidated as endocytosis, and partial endosomal escape resulted in the binding of TP–TMR to MTs. TP–TMR exhibited no cytotoxicity compared with MT-targeted drug scaffolds. These results indicate that TP scaffolds can be exploited as useful MT-targeted tools in living cells, such as in long-term imaging of MTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.