Abstract

Ethyl carbamate (EC) is a potentially toxic carcinogen produced during fermentation and storage of fermented foods, and many countries have set thresholds for its content in food. Therefore, sensitive, rapid and accurate detection of EC is meaningful to ensure the quality of fermented food. This study introduces a CdTe quantum dots/nano-5,10,15,20-tetrakis (4-methoxyphenyl)-porphyrin (nano TPP-OCH3 ) fluorescence sensor system detection of EC. The specificity of this sensing mainly relies on a photo-induced electron transfer and electrostatic force interaction between EC and nano TPP-OCH3 . This sensor presented a linear range of 10 to 1000 μg L-1 (R2 =0.9903) with a low detection limit of 7.14 μg L-1 . Meanwhile, the recovery (91.19-101.09%) and precision [relative standard deviation (RSD)=0.64-3.05%] of the sensor for the analysis of fermented food (yellow rice wine, soy sauce, Chinese spirits, Pu-erh tea) samples were good and could meet the requirements of practical detection. Moreover, the detection results of fermented food (yellow rice wine, soy sauce, Chinese spirits, Pu-erh tea) samples by this sensor are basically consistent with those of high-performance liquid chromatography with fluorescence detector (HPLC-FLD). This method was expected to provide a potential platform for sensitive and accurate detection of EC in food safety monitoring, which would provide knowledge of the flavor and quality related to fermented food. © 2021 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.