Abstract

Use of cell culture and conventional in vivo mammalian models to assess nerve regeneration across guidance conduits is resource-intensive. Herein we describe a high-throughput platform utilizing transgenic mice for stain-free axon visualization paired with rapid cryosection techniques for low-cost screening of novel bioengineered nerve guidance conduit performance. Interposition repair of sciatic nerve transection in mice expressing yellow fluorescent protein in peripheral neurons (Thy1.2 YFP-16) was performed with various bioengineered neural conduit compositions using a rapid sutureless entubulation technique under isoflurane anesthesia. Axonal ingrowth was assessed at 3 and 6 weeks using epifluorescent microscopy following cryosectioning. Mean procedure time (incision-to-closure) was less than 2½ minutes. Direct operational costs of a 3-week experiment was calculated at $21.47 per animal. Tissue processing steps were minimized to aldehyde fixation, cryoprotection and sectioning, and rapid fluorescent dye staining for conduit visualization. Fluorescent microscopy readily resolved robust axonal sprouting at 3 weeks, with clear elucidation of ingrowth-permissive, semipermissive, or restrictive nerve guidance conduit environments. A rapid and cost-efficient in vivo platform for screening of nerve guidance conduit performance has been described. NA. Laryngoscope, E392-E392, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.