Abstract

10-(2-Deoxy-beta-D-ribofuranosyl)pyrimido[4',5':4,5]pyrimido[1,6-a]indole-6,9(7H)-dione (dCPPI) and its derivatives were synthesized via the Suzuki-Miyaura coupling reaction of 5-iododeoxycytidine with 5-substituted N-Boc-indole-2-borates and characterized by UV-vis and fluorescence spectroscopy. The new fluorescent nucleosides showed rather large Stokes shifts (116-139 nm) in an aqueous buffer. The fluorescent intensities were dependent on the nature of the substituents on the indole rings. The electron-withdrawing groups increased the fluorescent intensity while the electron-donating groups having lone pairs decreased it. Among the substituted dCPPI derivatives tested, the trimethylammonium derivative of dCPPI was found to emit the brightest fluorescent light. The solvatochromism of dCPPI and its derivatives was also studied. Some of the dCPPI derivatives showed interesting solvent-dependent fluorescence enhancement and could be useful as new fluorescent structural probes for nucleic acids. The Lippert-Mataga analyses of the Stokes shift were also carried out to obtain estimated values of the dipole moment of the excited states of some of the derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.