Abstract

The synthesis, spectroscopy, and fluorescence quenching behavior of pentiptycene-derived phenyleneethynylene polymers, 1−3, are reported. The incorporation of rigid three-dimensional pentiptycene moieties into conjugated polymer backbones offers several design advantages for solid-state (thin film) fluorescent sensory materials. First, they prevent π-stacking of the polymer backbones and thereby maintain high fluorescence quantum yields and spectroscopic stability in thin films. Second, reduced interpolymer interactions dramatically enhance the solubility of polymers 1−3 relative to other poly(phenyleneethynylenes). Third, the cavities generated between adjacent polymers are sufficiently large to allow diffusion of small organic molecules into the films. These advantages are apparent from comparisons of the spectroscopic and fluorescence quenching behavior of 1−3 to a related planar electron-rich polymer 4. The fluorescence attenuation (quenching) of polymer films upon exposure to analytes depends on seve...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call