Abstract

Poly(p-phenylene vinylene) (PPV)/poly(ethylene oxide) (PEO) hybrid nanofibers were prepared by electrospinning a composite solution of PPV precursor/PEO in a mixture of ethanol and water, followed by thermal conversion. The precursor/PEO composite solutions were successfully electrospun into nanofibers with diverse helical, helical and linear, and helical bead-on-string morphologies by controlling the amount of aqueous PEO solution in a composite solution. Moreover, adding aqueous PEO solution to a precursor ethanol solution decreased the diameters of the fibers. The experimental data suggest that the viscosity, conductivity, and surface tension of the electrospinning solution are the main factors that influence the morphology of the fibers. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) investigations indicated that the PPV precursor reacts with PEO during thermal conversion. Ultraviolet–visible (UV-vis) and photoluminescence (PL) spectra of the PPV-PEO nanofibers exhibited appreciable blue shifts with the addition of PEO, which made it possible to fabricate nanofibers with fluorescence ranging from yellow-green to blue. These highly fluorescent PPV/PEO nanofibers with various morphologies are potentially interesting for many applications, such as micro- and nanooptoelectronic devices and systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.