Abstract

The ever increasing applications of fluorescence techniques in conjunction with the interest in enhanced detection sensitivities in bioanalysis, biosensing, and bioimaging are closely linked to the rational design of novel nontoxic fluorescent nanomaterials with improved brightness and stability that can be reproducibly synthesized from inexpensive starting materials in simple one-pot reactions and easily surface functionalized. This encouraged us to investigate the potential of the commercially available water-dispersible nanoclay Laponite RD with the empirical formula Na0.7(H2O)n{(Li0.3Mg5.5)[Si8O20(OH)4]}, forming 25 nm sized disk-shaped particles, as nanocarriers for different fluorophores. The Si–OH functions at the rims of these disks can be selectively grafted with 3-aminopropyldimethylethoxysilane (APES), thereby enabling subsequent coupling to amine-reactive molecules ranging from target-specific organic ligands and biomolecules to amine-reactive fluorescent labels. Here, we present different strategies for the surface functionalization of nanoclays and the subsequent quantification of the density of synthetically introduced surface amino groups exploiting analytical methods which rely on different detection schemes including elemental analysis, colorimetric assays, and fluorophore labeling strategies. In this respect, we systematically assess the potential of negatively and positively charged, neutral, and zwitterionic dyes to act as fluorescent labels for amino functionalities at the surface of negatively charged nanoclays. Our studies underline the strong influence of dye charge and aggregation tendency on the brightness of the bound dyes and on surface group quantification. Best results regarding surface group analysis and coupling yield were obtained for a neutral dansyl derivative and fluorescamine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.