Abstract
The halogen bonds (XB) formed by the two isomers 4-methyl pyridine (MePy) and aniline (ANL) with heptafluoro-1-propyl iodide (n-C3F7I) and heptafluoro-2-propyl iodide (iso-C3F7I) were investigated using vibrational (FT-IR and Raman) spectroscopy and quantum mechanical calculations. While these two isomers indicated a distinctive impact on the ring related vibrations, molecular electrostatic potential, frontier molecular orbitals, intermolecular electron density delocalisation and consequential charge transfer upon halogen bonding with n-C3F7I and iso-C3F7I, the dramatic intermolecular charge transfer (CT) occurring on the MePy involved XB systems demonstrated an ion-pair like aggregation. Such aggregation, after 72 h and longer after mixing, leads to an emission of fluorescence for both [MePy·C3F7I] systems. The resulting nano-sized aggregates were characterised using UV-Vis absorption and fluorescence spectroscopy along with scanning and transmittance electron microscopy (SEM and TEM), wherein, the XB complex with iso-C3F7I showed a faster and more severe aggregation due to a stronger CT than that with n-C3F7I. The present work is the first case of aggregation induced emission (AIE) due to aggregation of XB complexes formed by small neutral molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.