Abstract

We report herein a fluorescent molecularly imprinted polymer (FMIP) for the solid-phase extraction (SPE) and fluorimetric determination of hydrochlorothiazide (HCTZ) in water. The FMIP is based on fluorescent polystyrene nanoparticles embedded within a molecularly imprinted polyaniline (PANI) matrix. The operational adsorption parameters such as the initial HCTZ concentration, incubation time and the solution pH were found to influence the removal efficiency. At optimum conditions, a high adsorption capacity of the FMIP was found (2.08 mg g-1). Evidence of the adsorption process was confirmed by the change in the FMIP physicochemical properties measured by FTIR absorption spectroscopy and electron microscopy. Based on the regression R2 values and the consistently low values of the adsorption statistical error functions, equilibrium data were best fitted to both Freundlich and Temkin isotherms. Moreover, the pseudo-second-order kinetic model described the adsorption kinetics, and the mechanism of the adsorption process was explained by the intraparticle diffusion model. Upon studying adsorption thermodynamics, negative ΔG values (-26.18 kJ mol-1 at room temperature) were obtained revealing that the adsorption process is spontaneous. Interestingly, the maximum adsorption capacity was obtained at 298 K, pH 7.0, and using a high HCTZ concentration, thus revealing the suitability of the proposed FMIP for easy and fast SPE of HCTZ. The FMIP showed an imprinting factor of 1.19 implying the selectivity over the corresponding FNIP. Eventually, the proposed FMIP was successfully applied to the spectrofluorimetric determination of HCTZ in aqueous samples with %recovery values close to 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.