Viscosity is a key property of liquids, but it is difficult to measure in short-lived, metastable samples due to the long measuring times required by conventional rheology. Here, we show how this problem can be solved by using fluorescent molecular rotors. The excited-state fluorescence decay rate of these molecules is sensitive to the viscosity of their local environment, and by combining pulsed laser excitation with time-resolved fluorescence detection, we can measure viscosities with a time resolution of a few ns. We demonstrate this by measuring in real time the viscosity change in glycerol induced by a nanosecond temperature jump. This new approach makes it possible to measure the viscosity of extremely short-lived states of matter.

Full Text

Published Version
Open DOI Link

Get access to 250M+ research papers

Discover from 40M+ Open access, 3M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call