Abstract

Microbead-based point-of-care testing (POCT) has demonstrated great promise in translating detection modalities from bench-side to bed-side. This is due to the ease of visualization, high surface area-to-volume ratio of beads for efficient target binding, andefficient encoding capability for simultaneous detection of multiple analytes. This review (with 112 references) summarizes the progress made in the field of fluorescent microbead-based POCT. Following an introduction into the field, a first large section sums up techniques and materials for preparing microbeads, typically of dye-labelled particles, various kinds of quantum dots and upconversion materials. Further subsections cover the encapsulation of nanoparticles into microbeads, decoration of nanoparticles on microbeads, and in situ embedding of nanoparticles during microbead synthesis. A next large section summarizes microbead-based fluorometric POCT, with subsections on detection of nucleic acids, proteins, circulating tumor cells and bacteria. A further section covers emerging POCT based on the use of smartphones or flexible microchips. The last section gives conclusions and an outlook on current challenges and possible solutions. Aside from giving an overview on the state of the art, we expect this article to boost the further development of POCT technology. Graphical Abstract Schematic presentation of the fabrication of microbeads, the detection targets of interest including bacteria, circulating tumor cells (CTCs), protein and nucleic acid, and the emerging point-of-care testing (POCT) platform. The colored wheels of the bus represent the fluorescent materials embedded in (red color) or decorated on the surface of microbeads (green color).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call