Abstract

The effect of sodium pentachlorophenolate (NaPCP) exposure on the nutrient-starved pentachlorophenol (PCP)-mineralizing bacterium Sphingomonas sp. UG30 was assessed using fluorescent methods to measure DNA, RNA, total cellular protein, and cytoplasmic membrane proteins. UG30 cells were inoculated into sterilized Speed River (Guelph, ON, Canada) water samples in the presence of 50, 100, and 250 ppm NaPCP. No marked changes were observed in the total cellular DNA, RNA or protein levels over 90 d, indicating the macromolecular composition of UG30 was not affected by both nutrient limitation and NaPCP. Total cell counts as determined by DAPI staining also did not change over 90 d. Over the same period, viable counts decreased with increasing concentrations of NaPCP. At 250 ppm NaPCP, viable cell counts decreased over 6 orders of magnitude after 1 hr exposure. Cell numbers partially recovered once NaPCP was degraded. The UG30 cytoplasmic membrane polarization ratio also decreased after NaPCP was depleted. The decreased polarization value at the end of the study period suggested the UG30 membrane was more fluid and that this increase in fluidity was due to nutrient starvation effects rather than exposure to NaPCP. These results indicated that UG30 is a robust organism that is able to degrade NaPCP even under adverse conditions and fluorescent methods are useful for determining macromolecular concentrations and cytoplasmic membrane polarization values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.