Abstract

Herein, we report the preparation of a multifunctional metallacage-core supramolecular gel by orthogonal metal coordination and host-guest interactions. A tetragonal prismatic cage with four appended 21-crown-7 (21C7) moieties in its pillar parts was first prepared via the metal-coordination-driven self-assembly of cis-Pt(PEt3)2(OTf)2, tetraphenylethene (TPE)-based sodium benzoate ligands and linear dipyridyl ligands. Further addition of a bisammonium linker to the cage delivered a supramolecular polymer network via the host-guest interactions between the 21C7 moieties and ammonium salts, which formed a supramolecular gel at relatively higher concentrations. Due to the incorporation of a TPE derivative as the fluorophore, the gel shows emission properties. Multiple stimuli responsiveness and good self-healing properties were also observed because of the dynamic metal coordination and host-guest interactions used to stabilize the whole network structure. Moreover, the storage and loss moduli of the gel are 10-fold those of the gel without the metallacage cores, indicating that the rigid metallacage plays a significant role in enhancing the stiffness of the gel. The studies described herein not only enrich the functionalization of fluorescent metallacages via elegant ligand design but also provide a way to prepare stimuli-responsive and self-healing supramolecular gels as robust and smart materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call