Abstract
Fluorescent carbon dots (CDs) have acquired growing interest from different areas over decades. Their fascinating property of tunable fluorescence by changing the excitation wavelength has attracted researchers worldwide. Understanding the mechanisms behind fluorescence is of great importance, as they help with the synthesis and applications, significantly when narrowed down to applications with color-tunable mechanisms. But, due to a lack of practical and theoretical information, the fluorescence mechanisms of CDs remain unknown, preventing the production of CDs with desired optical qualities. This review focuses on the PL mechanisms of carbon dots. The quantum confinement effect determined the carbon core, the surface and edge states determined by various surface defects and the connected functional/chemical groups on the surface/edges, the molecular state solely determined the fluorophores in the interior or surface of the CDs, and the Crosslink Enhanced Emission Effect are the currently confirmed PL mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.