Abstract
The green alga Chlamydomonas reinhardtii is one of the most studied microalgae, which has the potential to be used as a model system to study lipid metabolism. Establishment of a method in this organism for rapid and simple measurement of neutral lipids is desirable. Fluorescent measurement of neural lipids by Nile Red staining has been widely used in various cell types including microalgae. However, a systematic study of Nile Red staining to measure neutral lipids in Chlamydomonas has not been reported. Here, we show that Nile Red staining is suitable for relative and absolute quantification of neutral lipids as well as for possible large-scale screening for mutants defective in lipid accumulation. We have compared and optimized the factors involved Nile Red staining including solvents, cell concentration, staining time, and Nile Red concentration. We determined that 5 % DMSO with 1 μg mL−1 Nile Red and 5–15-min time window after staining was optimal for measuring lipid content of cells within the range of 1 to 8 × 106 cells mL−1. The absolute quantification of neutral lipids could be achieved by standard addition method. In addition, we developed a protocol that could be potentially used for large-scale screening for cells with different lipid content. Thus, the work reported here provides timely needed techniques to facilitate Chlamydomonas to be used as a model organism for studying lipid metabolism for biodiesel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.