Abstract

Imaging technology based on novel nanomaterials is burgeoning as a potential tool for exploring various physiological processes. We herein report a fluorescent and magnetic nanoprobe (QMNP-RGD) for bimodal imaging of in vitro tumor cells. The preparation of this multifunctional nanomaterial is divided into three steps. First, commercial quantum dots (QDs) with high fluorescence intensity are covalently modified with an RGD peptide, which can facilitate the tumor cell uptake by αvβ3 integrin-induced active recognition. Superparamagnetic iron oxide (SPIO) nanoparticles (NPs) are then capped using a cationic polysaccharide to improve stability. Integration is finally achieved by convenient electrostatic binding. We successfully demonstrated that QMNP-RGD can be efficiently delivered into U87MG cells and used for fluorescence/magnetic resonance (MR) bimodal imaging. Other multimodal probes may be able to be designed for imaging based on this strategy of electrostatic binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.