Abstract
The stabilization of peptide secondary structure via stapling is a ubiquitous goal for creating new probes, imaging agents, and drugs. Inspired by indole-derived crosslinks found in natural peptide toxins, we employed ortho-phthalaldehydes to create isoindole staples, thus transforming inactive linear and monocyclic precursors into bioactive monocyclic and bicyclic products. Mild, metal-free conditions give an array of macrocyclic α-melanocyte-stimulating hormone (α-MSH) derivatives, of which several isoindole-stapled α-MSH analogues (Ki ≈1 nm) are found to be as potent as α-MSH. Analogously, late-stage intra-annular isoindole stapling furnished a bicyclic peptide mimic of α-amanitin that is cytotoxic to CHO cells (IC50 =70 μm). Given its user-friendliness, we have termed this approach FlICk (fluorescent isoindole crosslink) chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.