Abstract

The inability to visualize cancer during prostatectomy contributes to positive margins, cancer recurrence, and surgical side effects. A molecularly targeted fluorescent probe offers the potential for real-time intraoperative imaging. The goal of this study was to develop a probe for image-guided prostate cancer surgery. An antibody fragment (cys-diabody, cDb) against prostate stem cell antigen (PSCA) was conjugated to a far-red fluorophore, Cy5. The integrity and binding of the probe to PSCA was confirmed by gel electrophoresis, size exclusion, and flow cytometry, respectively. Subcutaneous models of PSCA-expressing xenografts were used to assess the biodistribution and in vivo kinetics, whereas an invasive intramuscular model was utilized to explore the performance of Cy5-cDb-mediated fluorescence guidance in representative surgical scenarios. Finally, a prospective, randomized study comparing surgical resection with and without fluorescent guidance was performed to determine whether this probe could reduce the incidence of positive margins. Cy5-cDb demonstrated excellent purity, stability, and specific binding to PSCA. In vivo imaging showed maximal signal-to-background ratios at 6 hours. In mice carrying PSCA(+) and negative (-) dual xenografts, the mean fluorescence ratio of PSCA(+/-) tumors was 4.4:1. In surgical resection experiments, residual tumors <1 mm that were missed on white light surgery were identified and resected using fluorescence guidance, which reduced the incidence of positive surgical margins (0/8) compared with white light surgery alone (7/7). Fluorescently labeled cDb enables real-time in vivo imaging of prostate cancer xenografts in mice, and facilitates more complete tumor removal than conventional white light surgery alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call