Abstract
The enumeration of circulating tumor cells (CTCs) in peripheral blood plays a crucial role in the early diagnosis, recurrence monitoring, and prognosis assessment of cancer patients. There is a compelling need to develop an efficient technique for the capture and identification of these rare CTCs. However, the exclusive reliance on a single criterion, such as the epithelial cell adhesion molecule (EpCAM) antibody or aptamer, for the specific recognition of epithelial CTCs is not universally suitable for clinical applications, as it usually falls short in identifying EpCAM-negative CTCs. To address this limitation, we propose a straightforward and cost-effective method involving triplex fluorescently labelled aptamers (FAM-EpCAM, Cy5-PTK7, and Texas Red-CSV) to modify Fe3O4-loaded dendritic SiO2 nanocomposite (dmSiO2@Fe3O4/Apt). This multi-recognition-based strategy not only enhanced the efficiency in capturing heterogeneous CTCs, but also facilitated the rapid and accurate identification of CTCs. The capture efficiency of heterogenous CTCs reached up to 93.33%, with a detection limit as low as 5 cells/mL. Notably, the developed dmSiO2@Fe3O4/Apt nanoprobe enabled the swift identification of captured cells in just 30min, relying solely on the fluorescently modified aptamers, which reduced the identification time by approximately 90% compared withthe conventional immunocytochemistry (ICC) technique. Finally, these nanoprobe characteristics were validated using blood samples from patients with various types of cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.