Abstract

Single-molecule Förster Resonance Energy Transfer (smFRET) excels in studying dynamic biomolecules by allowing precise observation of their conformational changes over time. To monitor RNA dynamics with smFRET, we developed a method to covalently label RNAs at their termini with a FRET pair of fluorophores. This direct end-labeling strategy targets the 5'-phosphate by carbodiimide (EDC)/N-hydroxysuccinimide (NHS) activation and the 3'-ribose by periodate oxidation, which can be adapted to other RNAs regardless of their size and sequence to study them independently of artificial modifications. Furthermore, the 5'-EDC/NHS activation is of general interest to all nucleic acids with a 5'-phosphate. The use of commercially available chemicals eliminates the need to synthesize RNA-specific probes. Total Internal Reflection Fluorescence (TIRF) microscopy requires the surface-immobilized molecules of interest to be within the evanescent field to be illuminated. A sophisticated way of keeping the RNA molecules within the evanescent field is to encapsulate them in phospholipid vesicles. Encapsulation benefits from the best of both worlds, tethering the molecule to the surface while enabling free diffusion of the molecule. We ensure that each vesicle contains only a single RNA molecule, enabling single-molecule imaging. Upon dual-end labeling and encapsulation of the RNA of interest, smFRET measurements offer a dynamic and detailed view of RNA behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.