Abstract

BackgroundFor large scale studies aiming at a better understanding of mitochondrial DNA (mtDNA), sequence variation in particular mt haplogroups (hgs) and population structure, reliable low-cost high-throughput genotyping assays are needed. Furthermore, methods facilitating sensitive mixture detection and relative quantification of allele proportions are indispensable for the study of heteroplasmy, mitochondrial sequence evolution, and mitochondrial disorders. Here the properties of a homogeneous competitive duplex allele specific PCR (ARMS) assay were scrutinized in the light of these requirements.Methodology/Principal FindingsA duplex ARMS assay amplifying either the ancestral mtDNA 2706G allele (non-hg H samples) or the derived 7028C allele (hg H samples) in the presence of SYBR Green fluorescent reporter dye was developed and characterized. Product detection, allele calling, and hg inference were based on the amplicon-characteristic melting-point temperatures obtained with on-line post-PCR fluorescent dissociation curve analysis (DCA). The analytical window of the assay covered at least 5 orders of magnitude of template DNA input with a detection limit in the low picogram range of genomic DNA. A set of forensically relevant test specimens was analyzed successfully. The presence of mtDNA mixtures was detected over a broad range of input DNA amounts and mixture ratios, and the estimation of allele proportions in samples with known total mtDNA content was feasible with limitations. A qualified DNA analyst successfully analyzed ∼2,200 DNA extracts within three regular working days, without using robotic lab-equipment. By performing the amplification on-line, the assay also facilitated absolute mtDNA quantification.ConclusionsAlthough this assay was developed just for a particular purpose, the approach is general in that it is potentially suitable in a broad variety of assay-layouts for many other applications, including the analysis of mixtures. Homogeneous ARMS-DCA is a valuable tool for large-volume studies targeting small numbers of single nucleotide polymorphisms (SNPs).

Highlights

  • The human mitochondrial genome consists of a small circular chromosome comprising approximately 16,568 base pairs

  • Homogeneous ARMS-dissociation curve analysis (DCA) is a valuable tool for large-volume studies targeting small numbers of single nucleotide polymorphisms (SNPs)

  • For each of the two analyzed mitochondrial DNA (mtDNA) SNPs, the competitive duplex ARMS utilized for both target sequences one non-allele-specific primer and one with a 39 terminal base specific for the interrogated allelic variant (Figure 1)

Read more

Summary

Introduction

The human mitochondrial (mt) genome consists of a small circular chromosome comprising approximately 16,568 base pairs (bp; revised Cambridge reference sequence, rCRS, [1]). Besides the non-coding control region, the mt genome contains the genes for 22 tRNAs and two rRNAs required for intra-organellar translation of the 13 polypeptide encoding mtDNA genes. A diploid human cell (e.g. a nucleated blood cell) usually contains two copies of a particular nuclear marker or gene but hundreds to thousands of mt genomes [2,3]. Genotyping of the highly polymorphic control region (or parts thereof) has become a standard tool in forensic genetics, when analyzing biological material containing insufficient amounts of amplifiable genomic DNA (e.g. shed hairs, stains that suffered heavy environmental stress, aged biological material) for the analysis of the highly informative nuclear DNA short tandem repeat markers. For large scale studies aiming at a better understanding of mitochondrial DNA (mtDNA), sequence variation in particular mt haplogroups (hgs) and population structure, reliable low-cost high-throughput genotyping assays are needed. The properties of a homogeneous competitive duplex allele specific PCR (ARMS) assay were scrutinized in the light of these requirements

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call