Abstract

Fluorescent nucleoside triphosphates are powerful probes of DNA synthesis, but their potential use in living animals has been previously underexplored. Here, we report the synthesis and characterization of 7-deaza-(1,2,3-triazole)-2'-deoxyadenosine-5'-triphosphate (dATP) derivatives of tetramethyl rhodamine ("TAMRA-dATP"), cyanine ("Cy3-dATP"), and boron-dipyrromethene ("BODIPY-dATP"). Upon microinjection into live zebrafish embryos, all three compounds were incorporated into the DNA of dividing cells; however, their impact on embryonic toxicity was highly variable, depending on the exact structure of the dye. TAMRA-EdATP exhibited superior characteristics in terms of its high brightness, low toxicity, and rapid incorporation and depletion kinetics in both a vertebrate (zebrafish) and a nematode (Caenorhabditis elegans). TAMRA-EdATP allows for unprecedented, real-time visualization of DNA replication and chromosome segregation in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.