Abstract

Multicomponent reactions (MCRs) can form unique structures with interesting functions, therefore, multifunctional polymers might be simply prepared using MCRs as coupling tools to simultaneously link and generate different functional groups. To verify this concept, a new fluorescent polymer containing phenylboronic acid has been facilely prepared via a one pot method by combining the Hantzsch reaction with reversible addition-fragmentation chain transfer (RAFT) polymerization. The Hantzsch-RAFT system has been found robust to smoothly achieve predesigned multifunctional polymer, which can be used for cell conjugation through the interaction between phenylboronic acid and glycoprotein on cell membrane. The conjugated cells could be directly observed due to the fluorescent Hantzsch moiety in the polymer chain, demonstrating a new application of the old Hantzsch reaction (>130 years) outside organic chemistry. Meanwhile, the conjugated cells remained excellent dispersity in the presence of coagulation protein (lectin), implying that multifunctional polymer a possible anticoagulant for cell separation. We believe that the current research paves a new way to exploit new applications of MCRs in interdisciplinary fields and might prompt the development of other multifunctional polymers based on different MCRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call