Abstract
Fluorescent defects have opened up exciting new opportunities to chemically tailor semiconducting carbon nanotubes for imaging, sensing, and photonics needs such as lasing, single photon emission, and photon upconversion. However, experimental measurements on the trap depths of these defects show a puzzling energy mismatch between the optical gap (difference in emission energies between the native exciton and defect trap states) and the thermal detrapping energy determined by application of the van ’t Hoff equation. To resolve this fundamentally important problem, here we synthetically incorporated a series of fluorescent aryl defects into semiconducting single-walled carbon nanotubes and experimentally determined their energy levels by temperature-dependent and chemically correlated evolution of exciton population and photoluminescence. We found that depending on the chemical nature and density of defects, the exciton detrapping energy is 14–77% smaller than the optical gap determined from photoluminesce...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.