Abstract

In this work, amino-functionalized mesoporous silica nanospheres (NH2-mSiO2) anchored with carbon dots (CDs) have been designed to construct an outstanding fluorescent sensor for heavy metal detection. Uniform mSiO2 was chosen to provide an optically transparent scaffold for immobilizing CDs. With the help of amino group modification on the surface of silica, benzene-1,4-diboronic acid (BA) was used as raw material to load CDs in the pores of mSiO2 by one-step solvothermal method. The proposed nanohybrid can solve the problem of aggregation-induced fluorescence quenching, leading to bright blue emission at 450 nm. Meanwhile, the fluorescence of NH2-mSiO2@CDs showed high sensitivity to Cr(VI) in acetic acid buffer solution (pH = 4) with detection limit as low as 5 nM by inner filter effect (IFE) and electrostatic interaction (EI). The proposed method can also be extended to other CDs-based detection systems for chemical/biological sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call