Abstract

BackgroundFrom a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays.ResultsArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy.ConclusionsGFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

Highlights

  • From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals

  • The results showed that fluorescence was significantly decreased at As (III) concentrations of 10–100 μg/l in milk and 10– 100 μg/kg in yoghurt

  • In measurement by electrothermal atomic absorption spectrometry (ET-AAS), non-linearities were obtained between the As (III) concentrations added to milk or yoghurt and the absorbance values

Read more

Summary

Introduction

From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Toxic metal contamination to foods causes major global health problems. Pollution of foods with environmental toxic metals even in trace quantities has attracted considerable attention in the global era with rapid transportation. The simple and inexpensive monitoring of food pollution needs to be developed for reducing or eliminating the amounts of toxic elements into the environment. The presence of toxic elements in milk and milk products may create health problems especially for infants, school age children, and old people who consume large quantity of those products

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call