Abstract

Afluorescent and photoelectrochemical (PEC) dual-mode biosensor based on target biorecognition-triggered cyclic amplification was constructed for Kana detection. With the assistance of the catalyzed reaction of exonuclease III, a Kana-aptamer DNA duplex was designed for conducting the cyclic release of G-rich DNA sequence as well as output DNA S2. The released G-rich sequence triggers the fluorescence (FL) of thioflavin T (ThT), the intensity of which is positively correlated with the Kana concentration. The linear range is 0.2 to 30nM, and the detection limit reaches 0.07nM. Simultaneously, the released output DNA S2 was captured by Fe3O4@CdTe-probe ssDNA and then combined with methylene blue to realize the transduction of polarity-reversed PEC signal, leading to the sensitive detection of Kana with a linear range of 0.2 to 40nM and a calculated detection limit of 0.2nM. The outstanding performance endows the dual-mode biosensor a promising prospect for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.