Abstract

The push-pull conjugated molecules 2,7-bis-(1H-pyrrol-2-yl)ethynyl-1,8-naphthyridine (BPN) and 2,7-bis(1H-indol-2-yl)ethynyl-1,8-naphthyridine (BIN) adopting daad relays of proton donors (d) and acceptors (a) form multiple hydrogen-bonding complexes with various monosaccharides that possess complementary adda sequences. Although the free BPN emits blue light at lambda(max) = 475 nm in CH(2)Cl(2), its complexation with octyl beta-d-glucopyranoside gives green fluorescence at lambda(max) = 535 nm. The excellent photophysical properties make BPN a highly sensitive probe for monitoring glucopyranoside to a detection limit of approximately 100 pM. On the other hand, the CD-silent BIN molecule binds with monosaccharides to form the CD-active multiple hydrogen-bonding complexes, which exhibit the remarkable chirality dependent helicities consistent with the prediction by the ab initio approaches. On the basis of the similar daad cleft and hence the binding property, the fluorescence and CD absorption methods in BPN and BIN, respectively, are complementary, which, in combination with computational molecular modeling, not only give a detailed insight into the structures of the receptor-saccharide complexes in solution, but also differentiate octyl beta-d-glucopyranoside from its enantiomer and other monosaccharides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.