Abstract

Scanning fluorescence spectroscopy was used to investigate the spatial and temporal variability in the fluorescence signature of phycoerythrin-containing organisms in the Arabian Sea during the early Northeast and early Southwest Monsoon (1994–1995). Phycoerythrin (PE) emission spectra were relatively invariant among all the samples collected on either cruise; the relatively symmetrical PE emission peaks showed maxima at wavelengths ranging from 563–572 nm. PE excitation spectra always showed either a strong shoulder or a peak at wavelengths absorbed maximally by phycourobilin (PUB) chromophores as well as a peak at wavelengths absorbed maximally by phycoerythrobilin (PEB) chromophores. Thus, the Arabian Sea appears to be different from the Black Sea or Gulf of Maine in that PUB-lacking forms of PE rarely, if ever, dominate the PE signal. Fluorescence excitation signatures differed in the relative excitation of PE emission by wavelengths absorbed by PUB (∼495 nm, Ex PUB) and by wavelengths absorbed by PEB (∼550 nm, Ex PEB); these were distinguished by having either very low (∼0.6), very high (∼1.8), or intermediate Ex PUB:Ex PEB ratios. The distribution of samples with different PE fluorescence signatures was investigated extensively during the early Southwest Monsoon, and communities characterized by the low Ex PUB:Ex PEB ratios were closely associated with cooler (24–27°C), fresher (35.7–36.25 psu) water influenced by coastal upwelling. In general, “ambient” surface water of the Arabian Sea during the early Southwest Monsoon was of intermediate temperature (27–29°C) and salinity (36.15–36.4 psu) and showed intermediate or high values for Ex PUB:Ex PEB. This suggests that the PE fluorescence signature can be used to follow the fate of upwelling-influenced water masses and the populations they transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call