Abstract

Concurrent analysis of the fluorescence intensity, at different emission wavelengths, of lipid vesicles containing acetylcholine receptor (AChR) labelled with a nitrobenzoxadiazole (NBD) moiety shows that selective interactions with the agonist carbamylcholine can be detected reproducibly by a self-calibration method with μ M detection limits. Concurrent analysis of the fluorescence intensity and lifetime of the new probe 4-dicyanomethylene-1,2,3,4-tetrahydromethylquinoline (DCQ) shows that general alterations of lipid membrane structure induced by temperature variation in the head-group region of lipid vesicles can be determined. A general approach to detection of selective interactions is introduced by observation of fluorescence intensity and lifetime changes of the probe NBD-phosphatidyl ethanolamine dispersed in lipid membranes containing unlabelled AChR. Detection and differentiation of selective interactions between carbamylcholine and the antagonist α-bungarotoxin are possible by correlation with intensity and lifetime at different emission wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.