Abstract
Four strong polyelectrolyte samples of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and N,N-dimethylacrylamide (DMAA) were radically copolymerized with a single label of naphthalene or pyrene, with both labels and without label, containing about 40 mol % AMPS. Fluorescence nonradiative energy transfer (NRET) I Py/I Np, anisotropy r, I 1/I 3 and excimer emission I E/I M of pyrene labels were observed in dilute aqueous solutions with and without cationic surfactant of cetyltrimethylammonium bromide (CTAB). The overlap concentration was determined as 3 g/L from the appearance of intermolecular excimer. The variation of intra- and intermolecular NRET with total polyelectrolyte concentration showed that the charged chains preferentially interpenetrated each other rather than reduce their coil volume as their concentration beyond the overlap threshold. By binding with CTAB, the polyelectrolyte chain became more coiled as known from the reduced viscosity. The intramolecular NRET was dominant when [CTAB]≤4×10–5 M and then the intermolecular NRET occurred at higher CTAB concentrations with hydrophobic aggregation between CTAB tails bound on different polyelectrolyte chains. The CTAB concentration corresponding to the maxima of I Py/I Np just is equal to the AMPS monomer concentration, indicating the formation of 1:1 binding between surfactant and polyelectrolyte in very dilute solutions. Added salt of NaCl up to 0.1 M hardly affected the intramolecular NRET but affected the I Py/I Np value for the intermolecular NRET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.