Abstract

AbstractThe interactions, in aqueous media, between a pyrene‐labelled polyelectrolyte poly(acrylic acid) (PAAMePy) with two different degrees of labelling and β‐ and γ‐cyclodextrins (β‐ and γ‐CD) were studied using absorption and fluorescence (steady‐state and time‐resolved) techniques. In addition to qualitative and quantitative parameters obtained from absorption and steady‐state fluorescence spectra, time‐resolved fluorescence data are presented, allowing additional important observations regarding the nature of the interactions. From the overall data it was possible to conclude that in the case of interaction with γ‐CD the efficient encapsulation of two pyrene units into the cavity of the cyclodextrin molecule leads to a decrease in the number of available free monomers and an increase in the number of preformed ground‐state dimers (GSDs) of pyrene. It was also shown that contrary to the situation in water, where only intramolecular interactions are present, the addition of γ‐CD leads to new interpolymeric interactions. The absence of significant changes is noted when the interactions of PAAMePy polymers take place with β‐CD. The excimer‐to‐monomer fluorescence intensity ratio (IE/IM) was found to increase with the added amount of γ‐CD but not with β‐CD. This increase is justified on the basis of the increase of the GSD contribution. The photophysical behaviour was found to be dependent on the pH of the media, but with the absence of relevant interactions between CD and PAAMePy polymer at alkaline values. Copyright © 2007 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.