Abstract

Interactions of trimeric calf spleen purine nucleoside phosphorylase (PNP) with guanine (Gua) and its analogue, 9-deazaguanine (9-deaza-Gua), were studied by means of the steady-state fluorescence. The aim was to test the hypothesis that the enzyme stabilizes the anionic form of purine, inferred previously from the unusual increase of fluorescence observed after binding of guanine by calf spleen PNP. We have found that the dissociation constants obtained form titration experiments are in fact pH-independent in the range 7.0-10.25 for both PNP/Gua and PNP/9-deaza-Gua complexes. In particular, at pH 7.0 we found K d = 0.12 ± 0.02 μ M for Gua and 0.16 ± 0.01 μ M for 9-deaza-Gua, while at the conditions where there is more than 40% of the anionic form the respective values were K d = 0.15 ± 0.01 μ M for Gua (pH 9.0) and 0.25 ± 0.02 μ M for 9-deaza-Gua (pH 10.25). Hence, the enzyme does not prefer binding of anionic forms of these ligands in respect to the neutral ones. This result questions the involvement of the anionic forms in the reaction catalyzed by trimeric PNPs, and contradicts the hypothesis of a strong hydrogen bond formation between the enzyme Asn 243 residue and the purine N(7) position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.