Abstract

Laser-induced fluorescence (LIF) excitation, UV-UV hole burning, and single vibronic level fluorescence (SVLF) spectra of jet-cooled o-fluoroanisole (o-FA) were measured. The most intense lowest-frequency band at 36 612 cm(-1) was assigned to the origin band of the most stable trans conformer. The UV-UV hole-burning spectrum demonstrated that the prominent bands in the LIF excitation spectrum were responsible for the trans conformer. The metastable non-planar conformer was not observed in the spectra. The vibrational band assignments were performed with the aid of quantum chemical calculations at the B3LYP/cc-pVTZ and CIS/6-311G(d,p) levels. The precise analysis of the SVLF spectra indicated that strong vibrational mixing through the Duschinsky effect and the Fermi resonance occurs in the S(1) state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call