Abstract

Isoorientin (ISOO) a glycosylated flavonoid found in acai berry exhibits relevant activities such as antidiabetic and antidepressant. However, its physicochemical action on any molecular target is scarcely known. In this work, we tackle the problem about the binding of ISOO to human serum albumin (HSA) applying fluorescence spectroscopy bimodal analysis aided by computational simulations. A static quenching process was detected having hypsochromic shift with implication in the polarizability around the endogenous probe (Trp 214) during complex formation. The binding mechanism reveals that all sites are equivalents and independents with binding constant value of 9.1 × 104 M-1 and, a total of six sites accessed whereas three of them were identified experimentally. The thermodynamic evaluation indicates that the complex formation is spontaneous (ΔG<0). The dynamics and docking simulations corroborated the experimental data by adding details of each site and its respective microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.