Abstract

Microbial products formed in biological wastewater treatment systems are closely related to system performance and status, and many of them have fluorescence spectral characteristics. In this work, the fluorescence spectral characteristics of the supernatants from an anaerobic hydrogen-producing bioreactor were studied using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. Since the components of the microbial products are complex, the parallel factor analysis (PARAFAC) method was used to extract the real spectra from the overlapped spectra. Two principal components were identified from the EEM spectra. The peaks at excitation-emission maxima of 280/350 and 350/440 nm were, respectively, attributed to the fluorescence of proteins and NADH. Their real concentrations were quantified using the PARAFAC coupled with the second-order calibration method. Results show that the formation rate of proteins was correlated to the production rate of hydrogen and volatile fatty acids, as well as the substrate degradation rate. A close correlation between the hydrogen partial pressure and the two fluorophores was found out. This study provides a reliable and convenient approach, which could be potentially used for monitoring the wastewater treatment reactor performance through measuring the fluorescence spectra of the supernatant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call