Abstract
A novel benzoxazole appended dipodal Schiff base (BS) was synthesized and its sensing property was investigated. The receptor BS detected Zn2+ ions selectively by turn-on fluorescence among the wide range of metal ions in DMSO-H2O (1:9 v/v, 50 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) at pH 7.4. The different physicochemical parameters of BS-Zn2+ complex were investigated by UV–vis, photoluminescence, 1H NMR titration and ESI-MS techniques. The limit of detection (LOD) and binding constant (Kb) of BS-Zn2+ complex have been determined by fluorescence titrations and found to be 4.53 × 104 M−1 and 0.52 μM. Moreover, binding ratio of BS and Zn2+ was found to be 1:1 by Job's method. Further, the BS–Zn2+ complex was used to sense pyrophosphate (PPi) ions as a secondary sensor in HEPES buffer solution. Overall, the sensitive fluorescence behavior of the receptor BS has been utilized as a powerful tracker for zinc ion and pyrophosphate ion in biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.