Abstract

Syntaxin1A, a neural-specific N-ethylmaleimide-sensitive factor attachment protein receptor protein essential to neurotransmitter release, in isolation forms a closed conformation with an N-terminal alpha-helix bundle folded upon the SNARE motif (H3 domain), thereby limiting interaction of the H3 domain with cognate SNAREs. Munc18-1, a neural-specific member of the Sec1/Munc18 protein family, binds to syntaxin1A, stabilizing this closed conformation. We used fluorescence resonance energy transfer (FRET) to characterize the Munc18-1/syntaxin1A interaction in intact cells. Enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A, or mutants of these proteins, were expressed as donor and acceptor pairs in human embryonic kidney HEK293-S3 and adrenal chromaffin cells. Apparent FRET efficiency was measured using two independent approaches with complementary results that unambiguously verified FRET and provided a spatial map of FRET efficiency. In addition, enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A colocalized with a Golgi marker and exhibited FRET at early expression times, whereas a strong plasma membrane colocalization, with similar FRET values, was apparent at later times. Trafficking of syntaxin1A to the plasma membrane was dependent on the presence of Munc18-1. Both syntaxin1A(L165A/E166A), a constitutively open conformation mutant, and syntaxin1A(I233A), an H3 domain point mutant, demonstrated apparent FRET efficiency that was reduced approximately 70% from control. In contrast, the H3 domain mutant syntaxin1A(I209A) had no effect. By using phosphomimetic mutants of Munc18-1, we also established that Ser-313, a Munc18-1 protein kinase C phosphorylation site, and Thr-574, a cyclin-dependent kinase 5 phosphorylation site, regulate Munc18-1/syntaxin1A interaction in HEK293-S3 and chromaffin cells. We conclude that FRET imaging in living cells may allow correlated regulation of Munc18-1/syntaxin1A interactions to Ca(2+)-regulated secretory events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.