Abstract

A series of dendronized porphyrins were synthesized and their photophysical properties were determined by UV–vis absorption, steady-state fluorescence, and time-resolved fluorescence. The constructs contained a porphyrin core connected to a first generation Frechet-type dendron (Py2G1) with or without a C4-butanoate linker, and to a second generation dendron (Py4G2) with a C4-linker. Pyrene and porphyrin were selected as donor and acceptor, respectively, for fluorescence resonance energy transfer or FRET. FRET occurred efficiently within the dendronized porphyrins as determined from the extremely weak fluorescence of pyrene. The number of pyrene groups present in the constructs was varied from two to eight, but was found to have little effect on FRET as FRET took place efficiently from an excited pyrene to a ground-state porphyrin. The parameter that was found to affect FRET the most was the distance separating pyrene from porphyrin within a construct. This effect was probed successfully by fitting the py...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.